
 Page 1/10

Distributed Development of Automotive Real-time Systems based
on Function-triggered Timing Constraints

Oliver Scheickl, Christoph Ainhauser, Michael Rudorfer

BMW Car IT, Munich, Germany

Abstract: This paper proposes a new model-driven
approach to develop automotive real-time systems.
Instead of constraining implementation-driven timing
properties – like offsets, periods or the like – for
software, our approach uses so-called function-
triggered timing constraints as basis of system
configuration. These constraints are implementation-
independent. The main focus is how such kinds of
constraints can be used to derive abstract
configuration boundaries or budgets for the different
development teams in a so-called distributed
development environment. Distributed development
is a typical strategy in the automotive domain, where
different teams are involved in the development of
modern car functions. Our approach thus decouples
the implementation and timing configuration work of
the teams. The main contributions of our work are a
methodology for distributed development of
automotive real-time systems, a special timing model
as basis for the methodology, and an algorithmic
approach to break down function-triggered timing
constraints to local requirements for the involved
teams.

Keywords: Automotive Real-time Systems,
Distributed Development, Contract-based Design,
Timing Model

1. Introduction

Today’s automobile features include an increasing
number of functions that are realized by electronics
and software. These functions are typically provided
by interactive distributed real time systems. The
development of these vehicle electrical systems is a
complex task mainly for the following reasons:

1. Functions are often distributed across the
system and may involve several electronic
control units (ECUs), sensors, actuators and
communication busses for their execution.

2. Each ECU may be involved in the realization
of many different functions. This leads to a
mutual influence of the functions on each
ECU.

3. Subsystems are often developed by different
teams and suppliers and have to be
integrated by the car manufacturer (OEM).

4. The ECUs realize an increasing number of
functions. This leads to a higher degree of
integration on each ECU.

5. The distributed functions often have to fulfil
stringent timing constraints to function
properly.

A significant increase in outstanding innovations is
expected for future automobile generations. The
industry and research community is searching for
methods to cope with the increasing complexity of
automotive system design.

To be prepared for the increasing overall complexity
of automotive embedded systems major automotive
OEMs and tier-1 suppliers founded the AUTOSAR
development partnership in the year 2003. Today,
many OEMs, suppliers as well as software and
hardware companies participate in the partnership
[10]. The main goal of the initiative is to define a
common development methodology and
standardized software architecture for ECUs with
well defined module interfaces [1]. As a basis for
this, a comprehensive structural system model
comprising software components, their
communication, basic software, software mapping to
ECUs etc. can be described in a standardized formal
way. This information can then be exchanged across
car manufacturer and suppliers if necessary, i.e.
across different development teams.
With the latest version 4.0 of AUTOSAR also the
required timing behaviour of the system is addressed
[1]. An early proposal for a timing-augmented
AUTOSAR specification was presented in [3]. Now,
a generic approach has been developed within the
AUTOSAR partnership to attach a so called timing
description to an AUTOSAR system model [13]. In
this way, the structural system model can be
extended to directly carry timing constraint
information. The timing model in our work utilizes the
generic AUTOSAR timing specification concept. Our
methodology presented in this work fits to the
AUTOSAR approach.

2. Motivation

2.1 Function-triggered Timing Constraints

Different kinds of timing constraints exist in practice.
In our work we concentrate on the following three
typical ones:

1. A latency constraint constrains the latency
between two successive events (e.g. "from
reading the acceleration sensor until the
execution of the damper actuator").

 Page 2/10

2. A triggering constraint constrains the period
of a cyclic event ("the damper control
function should be triggered with a period of
10 milliseconds").

3. A synchronization constraint relates the
temporal synchronicity of events ("all four
dampers of the car have to react
synchronously").

As these examples illustrate, the concept of “events”
is essential for our timing model. Section 3.2 details
the timing model and the usage of events.

In our understanding, timing constraints are either a
result of physics or of requirements from a
customer's perspective. The constraints in general
refer to a function, regardless of its implementation
in the car. Therefore we call such kind of timing
constraints function-triggered timing constraints. An
implementation by means of hardware and software
must then be chosen in a way that all function-
triggered timing constraints are always fulfilled. An
implementation contains a lot of so called timing
properties that influence the timing behaviour.
Focusing on software, such properties are execution
times, schedules or bus frame configurations. The
resulting timing behaviour must be correct with
respect to the function-triggered timing constraints.
Thus the properties itself must be chosen with
respect to these constraints. Timing properties are
implementation details and shall not be the target of
invariant, global timing constraints. In other words,
the timing constraints in our methodology (see
Section 3.3) are not implementation-driven but, as
mentioned before, function-triggered.

2.2 Roles in Distributed Automotive Development

In the automotive industry frequently a distributed
development strategy is observed. That is, the
overall vehicle electrical system is developed by
many different teams. The teams have different roles
in the process and therefore bear responsibility for
different parts of the system. Three main roles are
identified that are important for our proposed
methodology.

The system designer designs and finally integrates
the vehicle electrical system. The system designer
(typically an OEM or first-tier supplier) specifies the
system’s network (sensors, controllers, actuators,
and busses), the software architecture with its
software components (SWCs), and their mapping
onto the network’s ECUs. The SWCs are part of the
implementation of all desired car functions. The
ECUs are then actually developed by ECU
integrators (typically first-tier suppliers). This role
integrates the SWCs and basic software of an ECU
according to the system designer’s specification. As
one of AUTOSAR’s proposed benefits, software
components may be delivered by third party software
component suppliers, which is the third role.

It is the system designer’s task to integrate all ECUs
to a functioning system. It is the ECU integrator’s
task to integrate all software components on an ECU
according to its specification. To avoid
inconsistencies and misunderstandings in the
collaboration between the three mentioned roles, a
common specification format is required. Therefore
AUTOSAR offers its standardized software
architecture and its standardized exchange format.
Since release 4.0 also timing constraints can be
added to the specification.

With these three roles – which actually may be
represented by many people – we can identify two
typical collaboration use cases in the automotive
domain. The first one is the integration of an ECU
into a system. System designer and ECU integrator
have to collaborate in this use case. The second one
is rather new for the automotive industry and mainly
enabled by the AUTOSAR approach. Due to the
standardized software component interfaces now
also the integration of third-party software
components into an ECU is possible. Therefore,
system and ECU integrators have to collaborate with
the software component supplier.

2.3 Timing Responsibilities of the Roles

In Section 2.1 we mentioned that various timing
properties influence the timing behaviour of the
system and thus the fulfilment of its function-
triggered timing constraints. Each timing property is
influenced by one role. In the following we describe
this responsibility assignment.

As the system designer is responsible for the
system, he must also be aware of the system's
function-triggered timing constraints. In our approach
these constraints are considered as the basis of
system development (from a real-time viewpoint).
The system designer chooses the network of
communicating software components, the hardware
topology and - as one of the most important design
decisions with influence on the timing behaviour - the
mapping of software components to ECUs. Bus
design also is the system designer's responsibility.
Bus design covers the mapping of data elements to
bus frames and the frame scheduling.

The ECU integrator configures the basic software
and application software components on an ECU
according to the specification. Software components
have to be mapped to operating system tasks with
an appropriate task schedule. The schedule as
implementation property of course highly influences
the timing behaviour.

The software component supplier cannot directly
influence the runtime timing behaviour of software
components as it is integrated by the ECU integrator.
However, he can provide component-based timing
properties like execution times, required execution
periods or a required execution order.

 Page 3/10

2.4 Problem Statement

Functions can be distributed across the system.
Function-triggered timing constraints thus can lead
to mutual timing dependencies of different teams
and roles in a distributed development environment.
There are many examples for timing dependencies
in distributed development: In a synchronous
FlexRay network the ECU and bus schedules can be
tightly coupled if they use the same time base [5].
The change of the bus schedule can influence data
availability for tasks scheduled on connected ECUs.
In an asynchronous CAN network all sending ECUs
may influence the sending behaviour of each other
dynamically. Also, a certain software component's
implementation leads to a concrete execution time
when integrated on an ECU. The synchronization of
events on different ECUs implies the synchronization
of the schedules of different ECU integrators. Our
work concentrates on this kind of collaboration
dependencies regarding a system's timing. To tackle
this problem, we define a special timing model and a
methodology for distributed development of
automotive real-time systems based on function-
triggered timing constraints. Furthermore we develop
algorithms to generate timing requirements for the
different development teams according to the
function-triggered timing constraints.

In our work we focus on the role system designer.
The system designer has the responsibility to ensure
the system's correct timing behaviour. That means
he must coordinate the previously mentioned timing
dependencies of the various teams and roles. ECU
integrators and especially software component
developers not necessarily know the function-
triggered timing constraints. Therefore they need a
clear specification of the desired component's timing
requirements. The formal model of AUTOSAR
(system model plus generic timing model) offers a
valuable basis for our approach. The AUTOSAR
standard does not answer the question how the
fulfilment of function-triggered timing constraints can
be guaranteed in distributed system development.
Our work addresses exactly this issue.

2.5 Related Work

Our work shares some similar ideas of a general
approach called contract-based design [12]. In
computer science this is an approach to develop
software systems, especially large systems, with
distributed development. The interfaces of
components shall precisely be described in a formal
and verifiable way. For different aspects of functional
or non-functional behaviour components give
assertions (in our context guarantees) based on
some assumptions (in our context requirements), i.e.
a contract among components. This idea has been
adopted by different domains. [2] also proposes a

contract-based design approach motivated by an
automotive example. Safety and timing properties
(latency, triggering) can be expressed in a language
similar to Linear Temporal Logic. The approach
however neither considers function-triggered timing
constraints nor an iterative finding of appropriate
requirements. Rich Components [4] are another
concept to add non-functional requirements to
component models. End-to-end timing in terms of a
“path through a system” is also considered in a
system-wide timing analysis approach by [6]. The
model described in [7] assumes the knowledge of all
system details like task mapping, bus and task
scheduling. The decomposition of an end-to-end
constraint to component requirements is not part of
the model. The authors in [8] discuss the applicability
of AUTOSAR in the context of system-level
integration, component interfaces and portability.

3. Approach

3.1 Modelling a System

Our work follows the model-based development
approach. A “system" in our understanding is a static
system model that contains all information needed
for our approach. The system model is similar to
other models known from literature and industry (e.g.
AUTOSAR [1]) but only contains the elements and
attributes that are important for our task. Its scope is
the static structure (components, ports, etc.) of the
system, not the system's dynamic behaviour, i.e. its
expected runtime actions and interaction.

3.1.1 Software Structure Model

The software of the system is modelled as a set of
interconnected software components. A SWC is
either a composition that can contain other SWC or
an atomic SWC. An atomic SWC contains a set of
runnables that model pieces of executable code.
Two special types of atomic SWCs exist: sensor and
actuator SWCs can be used to model sensor and
actuator access. Furthermore a SWC can have
required and provided ports on which they can
receive and send data elements from and to other
SWCs via connectors. The complete software
structure is assumed as one composition that
contains a network of interconnected atomic SWC.
For simplification we neglect component hierarchies.

3.1.2 Hardware Topology Model

The hardware topology of the system is modelled as
a network of ECUs connected to a communication
bus. In our context, an ECU solely serves as
container for SWCs. There are two types of busses
supported, namely CAN and FlexRay. For FlexRay
networks an ECU can either be synchronized to the
bus or unsynchronized.

 Page 4/10

3.1.3 System Model

The model of a complete system consists of a
software structure, a hardware topology and, most
notably, the software mapping. A software mapping
describes which atomic SWC is executed on which
ECU. As a result, all connectors of the software
model can now be identified as local or remote
connectors. For local connectors immediate data
transmission is assumed. The data elements of
remote connectors however have to be transmitted
over a communication bus.

3.1.4 Communication Model

Each data element that is remotely exchanged
between SWCs is represented by a signal. A set of
such signals is mapped into a frame that is
transmitted over the communication bus. Every
frame has some scheduling attributes. For a CAN
frame a message ID (priority) can be modelled. For a
FlexRay frame the slot ID and communication cycles
can be modelled (actually an offset to the overall
cycle start). The so called communication matrix
models which ECU reads or writes which frame or
signal respectively. This information can be gained
from the software structure and its mapping, i.e. from
a system model.

3.2 Timex Model

Our Timex model is used to attach a so called timing
extension to a system model. A timing extension is
used to describe the static timing relations within a
given system. First of all we explain the basic
principle of events and event chains on which our
Timex model (Timing Extension) is based (see
Figure 1). After that we explain Timex itself.

Our Timex model is based on the concept of so
called observable events and event chains [3].
Observable events represent a condition of certain
system behaviour. In our context the following
events exist: external events at a sensor or actuator,
data element received event at a required port, data
element sent event at a provided port, signal queued
for transmission if a signal is ready to be transmitted
and signal sent to bus if a signal has been
transmitted. An event chain refers to two observable
events, namely the chain's stimulus and the chain's
response. The semantics of such a chain is that the
response occurs as causal consequence of the
stimulus. Stimulus and response thus also have a
clear temporal order (or dependency order [11]).

Figure 1: Relation of AUTOSAR and Timex elements

The structure of Timex consists of the following
elements.

3.2.1 Hand Over Points

In our methodology, some of the many existing
observable events in a system are of special
interest. These are the events on the border of two
responsibilities of different teams, or roles. They
mark the places in the model where data is handed
over from one team to another. Therefore in Timex
these events can be characterized as hand over
points (hop).

3.2.2 Function Timing and Function-chains

Function timing is used to capture all function-
triggered timing constraints as explained in Section
2.1. Function timing consists of a set of so-called
function-chains. This is an event chain as described
in Section 3.2 with a special semantics: it has a
stimulus hop and a response hop and models an
end-to-end timing dependency of a function. It is not
necessary to already know exactly what happens in
between these two hops.

3.2.3 Timing Constraints

Furthermore, function timing contains a set of timing
constraints that constrain the timing behaviour of the
function-chains. As these constraints are
independent of a concrete implementation (i.e. of a
system) function timing must be attached to some
kind of function model. AUTOSAR, which is our
basic system model, does not provide the concept of
a “function”. Instead, we use a composition without
atomic SWCs inside to model a function.

A latency timing constraint refers to one function-
chain and constrains the minimum and maximum
latency between each of that chain's stimulus and
response occurrences. A synchronization constraint
refers to two or more function-chains and constrains
the synchronicity of the chains' stimulus or response
hops. A triggering constraint refers to one function-
chain and constrains the periodic execution of that
function-chain.

3.2.4 System Timing and Segments

After function timing, a certain system timing can be
defined. If a composition is used in a system as
described in Section 3.1.3 a lot of implementation
details are known (SWC mapping, bus type).
According to our methodology the system designer
also can determine which parts of the overall system
are developed by which team. Thus he can identify
system timing hops additionally to the ones already
known from the function timing. All these hops can
now be used to model a set of so-called segments. A
segment is a special event chain with a stimulus and
a response hop. In a consistent Timex model every

 Page 5/10

function-chain is refined by an arbitrary number of
segments without gaps and also without overlaps.
One segment can be used for the refinement of
many function-chains. In other words, a segment
belongs to one team, but one segment can be part
of several function-chains. System timing consists of
all additional hops and all segments and it is
attached to a system model as its timing extension.

A complete Timex model of a system contains the
function-triggered timing constraints of all function-
chains modelled as function timing and the
implementation-specific segments modelled as
system timing. We call the complete representation
of a function-chain by means of segments the
function-chain’s segmentation. An example Timex
model (function-chain and its segmentation) with all
relevant model elements is depicted in Figure 2.

hop

sensor event

hop

actuator eventfunction event chain

endToEnd

segment

sensor
segment

transmit

sensor value

segment

transmit

controller value

segment

controller

segment

actuator

Function Timing

System Timing

hop

sensor

value

queued

hop

sensor

value

transmitted

hop

controller

value

transmitted

hop

controller

value

queued

latency timing constraint: 20 ms

Figure 2: Example Timex model

3.3 Methodology

Our methodology, described in this section, focuses
on the system designer role described in Section
2.2. It is mainly following an idealized top-down
approach for system development. In practice of
course system development is more complex and is
subject to many restrictions and prerequisites. Here,
the methodology is sufficient to explain the basic
problem, our proposed approach, and our solution.

Figure 3 depicts our methodology. It consists of six
steps. The first three steps are performed manually
by engineering work. Steps 4, 5 and 6 are performed
automatically, i.e. using algorithms. Steps 5 and 6
are performed iteratively. In the following each step
is described in detail.

3.3.1 Define Function Timing

The first step is the definition of the function timing
model (Section 3.2.2) where all function-triggered
timing constraints are collected (Section 3.2.3).
Function-triggered timing constraints are
implementation-independent, so no system model is

necessary in this step. A function model however is
needed to attach function timing. As described in
Section 3.2.3 we use an empty composition for this
purpose.

Figure 3: Methodology for distributed development
based on function-triggered timing constraints

Each observable event offered by the function model
or the software structure model can be characterized
as a hop. They can be used for the definition of
function-chains, which in turn have function timing
constraints. In function timing these hops typically
are “end-events” of signal paths like external events
and runnable entity terminated events. A function
timing model is always valid in the context of the

 Page 6/10

function model to which it is attached. However, the
function model can be used in several system
models and the according function timing can thus
be re-used. This concept makes function timing
independent from an implementation (i.e. concrete
system).

3.3.2 Configure System

System configuration means to map the atomic
SWCs of a software structure model onto ECUs of a
hardware topology model. The design process of
developing a software architecture (i.e. software
structure model) for the desired functional scope is
neglected here. Furthermore, a signal is created for
each data element sent over a remote connector.
The output of this step is the model of a system. We
assume that the system designer knows enough
details of the complete system.

3.3.3 Define System Timing

A system model and the according function timing
model are input for the definition of the system
timing. In this step additional communication-related
and SWC-related events can be characterized as
hops because now also the software structure,
software mapping and the resulting communication
is known. All additional hops of the system timing
must be on the signal path between the function
timing end-to-end hops. We assume that the system
designer as central role knows the responsibilities
within the complete system and thus can identify
which events separate two teams. Each segment
created that way belongs to one responsibility, i.e. to
one development team. The output is the Timex
system timing “graph”, consisting of hops (vertices)
and segments (edges).

3.3.4 Initialise Requirement Types

The system timing model carries the requirement
and guarantee values later in the methodology.
Therefore the required types of requirements for
segments and hops must be initialised once per
system. The goal is to be able to express all function
timing constraints by system timing requirements.
This step can be automated. We explain its details in
Section 4.1.

3.3.5 Generate Requirement Values

As mentioned earlier function-triggered timing
constraints are independent from concrete
implementation details. A special challenge in the
proposed methodology is the tracing of design
decisions and their influence on the generation of
requirements starting from function-triggered timing
constraints. One design decision is the software
mapping. It influences which communication will be
remote and thus influences which requirements are
necessary for communication. Furthermore, the type

of hardware topology as design decision influences
the type of requirements to be generated. We made
the observation that such kind of design decisions
influence the way how a function-triggered timing
constraint is mapped to requirements.

The goal of this methodology step is to generate a
set of timing requirements for certain segments and
hops of the system timing model (see step 4). The
requirements must be chosen in a way that the
fulfilment of all function-triggered constraints is
ensured if all requirements are fulfilled by their
guarantees. We will focus on that in Section 5.

3.3.6 Generate Communication Model

As last step the communication model as described
in Section 3.1.4 is generated. We assume that the
system designer is responsible for the configuration
of the system's communication. The communication
model then is the basis for the work of all other
teams. Primarily, three tasks have to be performed in
this step. First, all signals have to be grouped in
frames. Second, a communication matrix has to be
generated using the communication information
gathered from the software structure and the
software mapping. Third, a scheduling of the frames
has to be generated according to the communication
type (FlexRay or CAN) and with respect to the
requirements generated before. The resulting
communication model must fulfil all communication-
related requirements.

3.3.7 Iterative Steps

After the last methodology step each involved team
implements its subsystem, as depicted in the cloud
in Figure 3. A subsystem is either an ECU, if the
segments belong to a team in the role of an ECU
integrator, or a single SWC, if the segments belong
to a team in the role of a software component
supplier. For each subsystem there are segments
with timing requirements to be met. The teams must
implement and configure their subsystem according
to these requirements, if possible (see Section 5).
Otherwise the system's correct timing behaviour
cannot be ensured.

When the subsystems have been implemented by
the teams, timing guarantees for each segment are
given back to the system designer. The guarantees
are evaluated with respect to their requirements. If
all requirements are met by the guarantees no action
is required and the system is expected to fulfil all its
function-triggered timing constraints. Otherwise the
guarantees are input for the next iteration of steps 5
and 6 of the methodology and a new set of
requirement values must be generated.

Today, this negotiation process takes place in an
informal way. The Timex model and our proposed
methodology formalize it.

 Page 7/10

4. Problem Analysis

In this section we analyze the problem of steps 4
and 5 of our methodology depicted in Figure 3. Thus,
we assume that a system model is given (step 2)
and function timing (step 1) as well as system timing
(step 3) has been specified using Timex.

We reemphasise our terminology. Timing constraints
are system-wide, function-triggered and invariant.
They must be fulfilled by an implementation. A timing
requirement always refers to a single segment or
hop. Requirements are generated and valid for one
methodology iteration. They are accompanied by an
according guarantee that must fulfil the requirement.

In step 5 of our methodology a set of independent
timing requirements for segments and hops shall be
generated. These requirements must be fulfilled by
the team in charge, which in turn delivers an
appropriate timing guarantee. The problem of step 4
is to transform the timing constraints into timing
requirements for segments and hops, such that the
fulfilment of all requirements by their according
guarantees results in the fulfilment of all timing
constraints (“getting independently verifiable
requirements”). This is done once per system.

If the guarantees do not fulfil all requirements, a new
iteration is initiated. So the problem of step 5 is that
in iteration n+1 the guarantees for the requirements
of iteration n must be considered. That means the
new requirements shall not be generated arbitrary or
randomly, but with respect to the before generated
ones (“getting valid requirement values”).

A solution to the problem of step 4 ensures that
correct timing is evaluated on the level of single
requirements instead of system-wide constraints. A
solution to the problem of step 5 ensures that valid
requirement values are found.

The rest of this section is devoted to step 4. Section
5 outlines considerations to step 5.

4.1 Types of Segments

A system timing model consists of segments that
form function-chains. These are specified in the
according function timing. With the set of possible
events as hops (Section 3.2) and our considered
roles and use cases (Section 2.2) there are certain
types of possible segments. Table 1 lists all possible
segment types for the use case ECU integration.

Segment type Stimulus Hop Response Hop

sensor-to-bus external signal queued

transmission signal queued signal transmitted

over-ecu signal transmitted signal queued

bus-to-actuator signal transmitted external

Table 1: Segment types for the use case “ECU
Integration”

For the second use case SWC integration all
segment types except transmission can possibly be
refined. Now the path over a SWC within the
respective segment becomes visible in system
timing. Table 2 lists the additional segment types.

Segment type Stimulus Hop Response Hop

receive-data signal transmitted data on required port

over-swc data on required port data on provided port

send-data data on provided port signal transmitted

Table 2: Additional segment types needed for the
use case “SWC Integration”

Certain design decisions influence the segmentation
of function-chains, i.e. what types of segments are
needed for their segmentation. The first decision, of
course, is the set of atomic SWCs. The second is the
software mapping. The third are the use cases that
influence what segment types are needed (see
Tables 1 and 2). These design decisions are already
considered in methodology step 3.
Once all necessary segment types for the system
timing have been determined and the system timing
is complete a valid segmentation of all function-
chains is given.

4.2 Mapping of Constraints to Requirements

As described in the beginning of section 4, function-
constraints shall be expressed as a set of individual
requirements for segments and hops. Each of the
three possible constraint types latency,
synchronization and triggering (see Section 3.2.1)
must be mapped to requirements. We define the
following three possible types of requirements:

• A segment can have a latency requirement.
The segment must then have a certain
minimum and maximum latency.

• A hop can have an offset requirement. The
hop must have a minimum and maximum
offset (“distance”) to a certain reference hop.

• A hop can have a triggering requirement.
The hop’s event must then have a certain
period.

Note that there is no such thing as a synchronization
requirement possible on the granularity of segments
and hops. Synchronization always requires several
objects to be referenced. This is not possible for
segments and hops, because their requirements
shall be independent from other segments. That is,
synchronization constraints (for function-chains) as
well as the other two constraint types must be
mapped to the requirement types given above.

In the next Section we show this mapping using a
simple example.

 Page 8/10

4.3 Example

Consider the example given in Figure 2. The function
chain “endToEnd” is already segmented to five
segments, based on the software mapping design
decision and the appropriate use cases. As you can
see in the example, the applied use case is ECU
integration of a sensor ECU, a controller ECU, and
an actuator ECU. Thus, in this example we consider
the ECUs as “black boxes” with no third-party
software components on them. The system designer
is responsible for two transmission segments. The
ECU integrators of the three ECUs each are
responsible for their ECU segment.

The communication type as design decision
influences the type of requirements that segments
and hops of the system timing have to fulfil. The
requirement types are different for a CAN network
compared to a FlexRay network.

In the following we analyse the two different sets of
requirement types for the latency constraint in Figure
2. The requirement type sets are given in Table 3.

Segment CAN FlexRay

sensor latency latency

transmit sensor
value

latency triggering + offset for
stimulus and response hop

controller latency latency

transmit controller
value

latency triggering + offset for
stimulus and response hop

actuator latency latency

Table 3: Requirement types needed for the same
function-chain in a CAN and a FlexRay system

4.3.1 CAN

For a CAN network we assume that the control flow
is given by the data flow. In our case that means the
triggering of a stimulus hop’s event triggers the
response hop’s event. The latency constraint can
therefore be mapped to five latency requirements,
one for each segment. The sum of all min/max
latency requirement values must be greater/smaller
than the latency constraint’s min/max value.
However, every team only has to ensure the
fulfilment of its requirement, regardless of the overall
constraint (similar to a divide and conquer
approach). For example, the system designer must
ensure that the sensor value and controller value
transmission is performed within its required latency.

4.3.2 FlexRay

In case of a time-triggered bus like FlexRay the
control flow is not directly given with the data flow
since data transmission is triggered by the progress
of time. It must be specified when data is expected
to be queued for transmission and is transmitted.
Therefore an offset requirement is used. Besides the

minimum and maximum values, an offset
requirement also specifies a so called “source hop”.
The actual target hop must have the specified offset
relative to the source hop. In a FlexRay network, the
source hop typically is the cycle start of the network.
The transmission latency is expressed my means of
relative offsets. Because of the cyclic repetition of
FlexRay communication, also a triggering must be
specified for each queued and transmitted hop.
Therefore an additional triggering requirement is
necessary to map the initial latency constraint to a
FlexRay network. Here we only want to show, which
requirement types are necessary, not which values
they must have. This is investigated in Section 5.

4.4 Fulfilment of Requirements with Guarantees

Methodology step 5 includes the consideration of
timing guarantees in the requirement generation
process to avoid random requirement generation.
Therefore we first define, in which case a timing
guarantee fulfils a timing requirement.

• A latency requirement specifies a minimum
and a maximum latency, i.e. an interval. The
guaranteed interval must be within the
required interval.

• An offset requirement specifies a minimum
and a maximum offset, i.e. an interval.
Again, the offset guarantee interval must be
within the offset requirement interval.

• An event triggering requirement for a hop
specifies a period. The guaranteed period
must be the same as the required period.

5. Collaboration Scenarios

In this section we want to outline our approach of
iterative requirement value generation. As depicted
in our methodology in Figure 3, new requirement
values must be generated if not all requirements are
fulfilled by their guarantees.

To illustrate our iterative approach we will stick to our
example of Figure 2 and assume a CAN network, i.e.
a requirement setup as shown in the second column
of Table 3.

5.1 One Function-chain Example

In the first simple scenario, we assume only one
function-chain (Table 4) with a maximum latency
constraint. The minimum value is neglected here
because the concept is the same.

 Page 9/10

Three cases are possible for a requirement value:

1. If a latency requirement is exactly fulfilled by
its guarantee (requirement value equals
guarantee value) everything is fine.

2. If a guarantee value is even smaller than its
requirement value then the requirement is
fulfilled and additional buffer is gained.

3. If a guarantee value is greater than its
requirement value then there is a problem. A
new iteration must be initiated to generate a
new set of requirement values.

Segment Iteration n Iteration n+1

 Requ. Guar. Requ. Guar.

sensor 8 4 4 4

transmit sensor val. 2 2 2 2

controller 6 4 4 4

transmit controller 2 2 2 2

actuator 2 6 6 6

Sum 20 18 18 18

Table 4: Collaboration scenario, one function-chain

In Table 4 the transmission segments exactly fulfil
their requirements in iteration n. The actuator
segment violates its requirement. Though, the
sensor and controller segments have smaller
guarantee values. This buffer can be used to grant a
more relaxed requirement for the actuator in iteration
n+1. We call this process horizontal shifting (shifting
buffer along a chain).

5.2 Two Function-chains Example

In this more complex scenario of Table 5 we assume
we have two (or more) such function-chains. For
simplicity we now assume they are independent, i.e.
they don’t have common segments.

Segment Iteration n Iteration n+1

 Requ. Guar. Requ. Guar.

sensor 1 8 6 6 6

transmit sensor 1 2 2 2 2

controller 1 4 4 6 6

transmit controller 1 2 2 2 2

actuator 1 4 4 4 4

Sum 20 18 20 20

sensor 2 8 8 8 8

transmit sensor 2 2 2 2 2

controller 2 4 6 4 4

transmit controller 2 2 2 2 2

actuator 2 4 4 4 4

Sum 20 22 20 20

Table 5: Collaboration scenario, two function-chains

In chain 1 the sensor segment’s guarantee is smaller
than its requirement so there is a buffer of 2 in
iteration n. Chain 2 however has a violated
requirement at its controller segment. In iteration n+1
the buffer of chain 1 can be used for chain 2
indirectly, because both controller segments are on
the same ECU. We assume, if one segment’s
requirement is relaxed, another segment’s
requirement on the same resource can be tightened.
We call this process vertical shifting (shifting buffer
along a resource).

5.3 Generalization of the Problem

The two examples showed our basic ideas how a
functioning timing configuration can be found using
an iterative process. Therefore the use of buffers is
essential. For a real-world system with several such
chains and multiple development teams a complex
framework of constraints arises. That means that in
fact it is not trivial to determine valid requirement
values. In particular, a “manual approach” like in
these examples will be inapplicable. We use
constraint logic programming (CLP) techniques to
formalize all dependencies of requirement values
and to generate new values during an iteration of
methodology steps 5 and 6. Our constraint system
sets up different classes of rules that constrain the
resulting requirement values:

• Basic, system-specific rules, e.g. the offset
of a transmission hop must be smaller than
its period

• Rules to ensure that all function-triggered
constraints are fulfilled with the requirements
(independence of requirements), e.g. by
summing the segment latencies of chains

• Rules that express horizontal and vertical
shifting as explained in Sections 5.1 and 5.2

• Optimization rules, e.g. maximize the latency
of a function chain to save resources

A constraint solver can then be used to determine
requirement values that fulfil all of these CLP
constraints.

6. Prototype Implementation

Our Methodology is implemented as a prototype tool.
It is based on Artop [9]. Artop is an Eclipse-based
community approach to deliver a common platform
for AUTOSAR tools. It offers basic functionalities,
like an AUTOSAR meta-model implementation,
model and workspace management or basic model
editors. Artop is the fundament for the
implementation of our prototype.

 Page 10/10

Figure 4: Function timing example

We use Artop’s plug-in concept to implement all
Timex functionalities as plug-ins. The plug-ins offer:

• The Timex meta-model (Section 3.2)

• A textual Timex editor to model Function
Timing and System Timing (Figure 4)

• A graphical Timex viewer to display the
structure of function-chains, segments and
hops graphically (Figure 5)

• An implementation of methodology step 4

• CLP algorithms as example implementation
of methodology step 5

• A simple communication generator (step 6)

• A converter to export generated Timex
requirements to a standard AUTOSAR 4.0
timing model and vice versa

Our prototype covers the complete methodology as
described in Section 3.3

Figure 5: Graphical Timex viewer

7. Summary

In this article we presented Timex, a development
methodology and timing model for automotive

systems. The focus of Timex is a distributed
development of distributed automotive real-time
systems. Our methodology focuses on the role
system designer in such a distributed development
environment. This role integrates the overall system
and must ensure the fulfilment of its timing
constraints. Timing constraints are considered as
function-triggered. We propose a timing model for
the methodology and an approach to map function-
triggered timing constraints to requirements to be
fulfilled by the involved teams. In an iterative
process, requirement values are determined, such
that a) the implementation of all teams can fulfil their
requirements with guarantees and b) the fulfilment of
all requirements implies the fulfilment of all function-
triggered timing constraints. The methodology is
illustrated with some examples. Currently we are
developing a formal description of our approach.

8. References

[1] AUTOSAR Development Partnership: "Automotive
Open System Architecture", http://www.autosar.org.

[2] Brunel et. al: "SoftContract: an Assertion-Based
Software Development Process that Enables
Design-by-Contract", Proc. of DATE’04, 2004.

[3] O. Scheickl, M. Rudorfer: "Automotive real time
development using a timing-augmented AUTOSAR
specification", Proceedings of ERTS, 2008.

[4] W. Damm et. al.: "Boosting Re-use of Embedded
Automotive Applications Through Rich
Components" In Proc. of Foundations of Interface
Technologies, 2005.

[5] S. Reichelt, O. Scheickl, G. Tabanoglu: "The
Influence of Real-time Constraints on the Design of
FlexRay-based Systems", DATE’09, 2009.

[6] N. Feiertag et. al.: "A Compositional Framework for
End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics",
Proceedings of the IEEE Real-Time System
Symposium (RTSS), 2008.

[7] R. Henia et. al.: "System Level Performance
Analysis - the SymTA/S Approach", IEE Proc. of
Computers and Digital Techniques, 2005.

[8] Heinecke et. al.: "Software components for reliable
automotive systems", Proc. of Date’08, 2008.

[9] M. Rudorfer et. al.: "Artop – an ecosystem
approach for collaborative AUTOSAR tool
development", Proc. of ERTS

2
, 2010.

[10] S. Fürst et. al.: "AUTOSAR – A Worldwide
Standard is on the Road", Proc. of 14

th
 International

Congress Electronic Systems for Vehicles, 2009.

[11] M. Broy: "Time and Causality in Interactive
Distributed Systems", Summer School, 2008.

[12] B. Meyer: "Applying Design by Contract", IEEE
Computer Society Press Volume 25, 1992.

[13] AUTOSAR Development Partnership:
"Specification of Timing Extensions",
http://autosar.org/download/R4.0/AUTOSAR_TPS_
TimingExtensions.pdf, 2010.

