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Abstract: This paper proposes a new model-driven 
approach to develop automotive real-time systems. 
Instead of constraining implementation-driven timing 
properties – like offsets, periods or the like – for 
software, our approach uses so-called function-
triggered timing constraints as basis of system 
configuration. These constraints are implementation-
independent. The main focus is how such kinds of 
constraints can be used to derive abstract 
configuration boundaries or budgets for the different 
development teams in a so-called distributed 
development environment. Distributed development 
is a typical strategy in the automotive domain, where 
different teams are involved in the development of 
modern car functions. Our approach thus decouples 
the implementation and timing configuration work of 
the teams. The main contributions of our work are a 
methodology for distributed development of 
automotive real-time systems, a special timing model 
as basis for the methodology, and an algorithmic 
approach to break down function-triggered timing 
constraints to local requirements for the involved 
teams. 
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1. Introduction 

Today’s automobile features include an increasing 
number of functions that are realized by electronics 
and software. These functions are typically provided 
by interactive distributed real time systems. The 
development of these vehicle electrical systems is a 
complex task mainly for the following reasons: 
 

1. Functions are often distributed across the 
system and may involve several electronic 
control units (ECUs), sensors, actuators and 
communication busses for their execution. 

2. Each ECU may be involved in the realization 
of many different functions. This leads to a 
mutual influence of the functions on each 
ECU. 

3. Subsystems are often developed by different 
teams and suppliers and have to be 
integrated by the car manufacturer (OEM). 

4. The ECUs realize an increasing number of 
functions. This leads to a higher degree of 
integration on each ECU. 

5. The distributed functions often have to fulfil 
stringent timing constraints to function 
properly. 

A significant increase in outstanding innovations is 
expected for future automobile generations. The 
industry and research community is searching for 
methods to cope with the increasing complexity of 
automotive system design.  

To be prepared for the increasing overall complexity 
of automotive embedded systems major automotive 
OEMs and tier-1 suppliers founded the AUTOSAR 
development partnership in the year 2003. Today, 
many OEMs, suppliers as well as software and 
hardware companies participate in the partnership 
[10]. The main goal of the initiative is to define a 
common development methodology and 
standardized software architecture for ECUs with 
well defined module interfaces [1]. As a basis for 
this, a comprehensive structural system model 
comprising software components, their 
communication, basic software, software mapping to 
ECUs etc. can be described in a standardized formal 
way. This information can then be exchanged across 
car manufacturer and suppliers if necessary, i.e. 
across different development teams. 
With the latest version 4.0 of AUTOSAR also the 
required timing behaviour of the system is addressed 
[1]. An early proposal for a timing-augmented 
AUTOSAR specification was presented in [3]. Now, 
a generic approach has been developed within the 
AUTOSAR partnership to attach a so called timing 
description to an AUTOSAR system model [13]. In 
this way, the structural system model can be 
extended to directly carry timing constraint 
information. The timing model in our work utilizes the 
generic AUTOSAR timing specification concept. Our 
methodology presented in this work fits to the 
AUTOSAR approach. 

2. Motivation 

2.1 Function-triggered Timing Constraints 

Different kinds of timing constraints exist in practice. 
In our work we concentrate on the following three 
typical ones: 

1. A latency constraint constrains the latency 
between two successive events (e.g. "from 
reading the acceleration sensor until the 
execution of the damper actuator"). 
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2. A triggering constraint constrains the period 
of a cyclic event ("the damper control 
function should be triggered with a period of 
10 milliseconds"). 

3. A synchronization constraint relates the 
temporal synchronicity of events ("all four 
dampers of the car have to react 
synchronously"). 

As these examples illustrate, the concept of “events” 
is essential for our timing model. Section 3.2 details 
the timing model and the usage of events. 

In our understanding, timing constraints are either a 
result of physics or of requirements from a 
customer's perspective. The constraints in general 
refer to a function, regardless of its implementation 
in the car. Therefore we call such kind of timing 
constraints function-triggered timing constraints. An 
implementation by means of hardware and software 
must then be chosen in a way that all function-
triggered timing constraints are always fulfilled. An 
implementation contains a lot of so called timing 
properties that influence the timing behaviour. 
Focusing on software, such properties are execution 
times, schedules or bus frame configurations. The 
resulting timing behaviour must be correct with 
respect to the function-triggered timing constraints. 
Thus the properties itself must be chosen with 
respect to these constraints. Timing properties are 
implementation details and shall not be the target of 
invariant, global timing constraints. In other words, 
the timing constraints in our methodology (see 
Section 3.3) are not implementation-driven but, as 
mentioned before, function-triggered. 

2.2 Roles in Distributed Automotive Development 

In the automotive industry frequently a distributed 
development strategy is observed. That is, the 
overall vehicle electrical system is developed by 
many different teams. The teams have different roles 
in the process and therefore bear responsibility for 
different parts of the system. Three main roles are 
identified that are important for our proposed 
methodology. 

The system designer designs and finally integrates 
the vehicle electrical system. The system designer 
(typically an OEM or first-tier supplier) specifies the 
system’s network (sensors, controllers, actuators, 
and busses), the software architecture with its 
software components (SWCs), and their mapping 
onto the network’s ECUs. The SWCs are part of the 
implementation of all desired car functions. The 
ECUs are then actually developed by ECU 
integrators (typically first-tier suppliers). This role 
integrates the SWCs and basic software of an ECU 
according to the system designer’s specification. As 
one of AUTOSAR’s proposed benefits, software 
components may be delivered by third party software 
component suppliers, which is the third role. 

It is the system designer’s task to integrate all ECUs 
to a functioning system. It is the ECU integrator’s 
task to integrate all software components on an ECU 
according to its specification. To avoid 
inconsistencies and misunderstandings in the 
collaboration between the three mentioned roles, a 
common specification format is required. Therefore 
AUTOSAR offers its standardized software 
architecture and its standardized exchange format. 
Since release 4.0 also timing constraints can be 
added to the specification. 

With these three roles – which actually may be 
represented by many people – we can identify two 
typical collaboration use cases in the automotive 
domain. The first one is the integration of an ECU 
into a system. System designer and ECU integrator 
have to collaborate in this use case. The second one 
is rather new for the automotive industry and mainly 
enabled by the AUTOSAR approach. Due to the 
standardized software component interfaces now 
also the integration of third-party software 
components into an ECU is possible. Therefore, 
system and ECU integrators have to collaborate with 
the software component supplier. 

2.3 Timing Responsibilities of the Roles 

In Section 2.1 we mentioned that various timing 
properties influence the timing behaviour of the 
system and thus the fulfilment of its function-
triggered timing constraints. Each timing property is 
influenced by one role. In the following we describe 
this responsibility assignment. 

As the system designer is responsible for the 
system, he must also be aware of the system's 
function-triggered timing constraints. In our approach 
these constraints are considered as the basis of 
system development (from a real-time viewpoint). 
The system designer chooses the network of 
communicating software components, the hardware 
topology and - as one of the most important design 
decisions with influence on the timing behaviour - the 
mapping of software components to ECUs. Bus 
design also is the system designer's responsibility. 
Bus design covers the mapping of data elements to 
bus frames and the frame scheduling.  

The ECU integrator configures the basic software 
and application software components on an ECU 
according to the specification. Software components 
have to be mapped to operating system tasks with 
an appropriate task schedule. The schedule as 
implementation property of course highly influences 
the timing behaviour. 

The software component supplier cannot directly 
influence the runtime timing behaviour of software 
components as it is integrated by the ECU integrator. 
However, he can provide component-based timing 
properties like execution times, required execution 
periods or a required execution order. 
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2.4 Problem Statement 

Functions can be distributed across the system. 
Function-triggered timing constraints thus can lead 
to mutual timing dependencies of different teams 
and roles in a distributed development environment. 
There are many examples for timing dependencies 
in distributed development: In a synchronous 
FlexRay network the ECU and bus schedules can be 
tightly coupled if they use the same time base [5]. 
The change of the bus schedule can influence data 
availability for tasks scheduled on connected ECUs. 
In an asynchronous CAN network all sending ECUs 
may influence the sending behaviour of each other 
dynamically. Also, a certain software component's 
implementation leads to a concrete execution time 
when integrated on an ECU. The synchronization of 
events on different ECUs implies the synchronization 
of the schedules of different ECU integrators. Our 
work concentrates on this kind of collaboration 
dependencies regarding a system's timing. To tackle 
this problem, we define a special timing model and a 
methodology for distributed development of 
automotive real-time systems based on function-
triggered timing constraints. Furthermore we develop 
algorithms to generate timing requirements for the 
different development teams according to the 
function-triggered timing constraints. 

In our work we focus on the role system designer. 
The system designer has the responsibility to ensure 
the system's correct timing behaviour. That means 
he must coordinate the previously mentioned timing 
dependencies of the various teams and roles. ECU 
integrators and especially software component 
developers not necessarily know the function-
triggered timing constraints. Therefore they need a 
clear specification of the desired component's timing 
requirements. The formal model of AUTOSAR 
(system model plus generic timing model) offers a 
valuable basis for our approach. The AUTOSAR 
standard does not answer the question how the 
fulfilment of function-triggered timing constraints can 
be guaranteed in distributed system development. 
Our work addresses exactly this issue. 

2.5 Related Work 

Our work shares some similar ideas of a general 
approach called contract-based design [12]. In 
computer science this is an approach to develop 
software systems, especially large systems, with 
distributed development. The interfaces of 
components shall precisely be described in a formal 
and verifiable way. For different aspects of functional 
or non-functional behaviour components give 
assertions (in our context guarantees) based on 
some assumptions (in our context requirements), i.e. 
a contract among components. This idea has been 
adopted by different domains. [2] also proposes a 

contract-based design approach motivated by an 
automotive example. Safety and timing properties 
(latency, triggering) can be expressed in a language 
similar to Linear Temporal Logic. The approach 
however neither considers function-triggered timing 
constraints nor an iterative finding of appropriate 
requirements. Rich Components [4] are another 
concept to add non-functional requirements to 
component models. End-to-end timing in terms of a 
“path through a system” is also considered in a 
system-wide timing analysis approach by [6]. The 
model described in [7] assumes the knowledge of all 
system details like task mapping, bus and task 
scheduling. The decomposition of an end-to-end 
constraint to component requirements is not part of 
the model. The authors in [8] discuss the applicability 
of AUTOSAR in the context of system-level 
integration, component interfaces and portability. 

3. Approach 

3.1 Modelling a System 

Our work follows the model-based development 
approach. A “system" in our understanding is a static 
system model that contains all information needed 
for our approach. The system model is similar to 
other models known from literature and industry (e.g. 
AUTOSAR [1]) but only contains the elements and 
attributes that are important for our task. Its scope is 
the static structure (components, ports, etc.) of the 
system, not the system's dynamic behaviour, i.e. its 
expected runtime actions and interaction. 

3.1.1 Software Structure Model 

The software of the system is modelled as a set of 
interconnected software components. A SWC is 
either a composition that can contain other SWC or 
an atomic SWC. An atomic SWC contains a set of 
runnables that model pieces of executable code. 
Two special types of atomic SWCs exist: sensor and 
actuator SWCs can be used to model sensor and 
actuator access. Furthermore a SWC can have 
required and provided ports on which they can 
receive and send data elements from and to other 
SWCs via connectors. The complete software 
structure is assumed as one composition that 
contains a network of interconnected atomic SWC. 
For simplification we neglect component hierarchies. 

3.1.2 Hardware Topology Model 

The hardware topology of the system is modelled as 
a network of ECUs connected to a communication 
bus. In our context, an ECU solely serves as 
container for SWCs. There are two types of busses 
supported, namely CAN and FlexRay. For FlexRay 
networks an ECU can either be synchronized to the 
bus or unsynchronized. 
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3.1.3 System Model 

The model of a complete system consists of a 
software structure, a hardware topology and, most 
notably, the software mapping. A software mapping 
describes which atomic SWC is executed on which 
ECU. As a result, all connectors of the software 
model can now be identified as local or remote 
connectors. For local connectors immediate data 
transmission is assumed. The data elements of 
remote connectors however have to be transmitted 
over a communication bus. 

3.1.4 Communication Model 

Each data element that is remotely exchanged 
between SWCs is represented by a signal. A set of 
such signals is mapped into a frame that is 
transmitted over the communication bus. Every 
frame has some scheduling attributes. For a CAN 
frame a message ID (priority) can be modelled. For a 
FlexRay frame the slot ID and communication cycles 
can be modelled (actually an offset to the overall 
cycle start). The so called communication matrix 
models which ECU reads or writes which frame or 
signal respectively. This information can be gained 
from the software structure and its mapping, i.e. from 
a system model. 

3.2 Timex Model 

Our Timex model is used to attach a so called timing 
extension to a system model. A timing extension is 
used to describe the static timing relations within a 
given system. First of all we explain the basic 
principle of events and event chains on which our 
Timex model (Timing Extension) is based (see 
Figure 1). After that we explain Timex itself. 

Our Timex model is based on the concept of so 
called observable events and event chains [3]. 
Observable events represent a condition of certain 
system behaviour. In our context the following 
events exist: external events at a sensor or actuator, 
data element received event at a required port, data 
element sent event at a provided port, signal queued 
for transmission if a signal is ready to be transmitted 
and signal sent to bus if a signal has been 
transmitted. An event chain refers to two observable 
events, namely the chain's stimulus and the chain's 
response. The semantics of such a chain is that the 
response occurs as causal consequence of the 
stimulus. Stimulus and response thus also have a 
clear temporal order (or dependency order [11]). 

 

 

Figure 1: Relation of AUTOSAR and Timex elements 

The structure of Timex consists of the following 
elements. 

3.2.1 Hand Over Points 

In our methodology, some of the many existing 
observable events in a system are of special 
interest. These are the events on the border of two 
responsibilities of different teams, or roles. They 
mark the places in the model where data is handed 
over from one team to another. Therefore in Timex 
these events can be characterized as hand over 
points (hop). 

3.2.2 Function Timing and Function-chains 

Function timing is used to capture all function-
triggered timing constraints as explained in Section 
2.1. Function timing consists of a set of so-called 
function-chains. This is an event chain as described 
in Section 3.2 with a special semantics: it has a 
stimulus hop and a response hop and models an 
end-to-end timing dependency of a function. It is not 
necessary to already know exactly what happens in 
between these two hops. 

3.2.3 Timing Constraints 

Furthermore, function timing contains a set of timing 
constraints that constrain the timing behaviour of the 
function-chains. As these constraints are 
independent of a concrete implementation (i.e. of a 
system) function timing must be attached to some 
kind of function model. AUTOSAR, which is our 
basic system model, does not provide the concept of 
a “function”. Instead, we use a composition without 
atomic SWCs inside to model a function. 

A latency timing constraint refers to one function-
chain and constrains the minimum and maximum 
latency between each of that chain's stimulus and 
response occurrences. A synchronization constraint 
refers to two or more function-chains and constrains 
the synchronicity of the chains' stimulus or response 
hops. A triggering constraint refers to one function-
chain and constrains the periodic execution of that 
function-chain. 

3.2.4 System Timing and Segments 

After function timing, a certain system timing can be 
defined. If a composition is used in a system as 
described in Section 3.1.3 a lot of implementation 
details are known (SWC mapping, bus type). 
According to our methodology the system designer 
also can determine which parts of the overall system 
are developed by which team. Thus he can identify 
system timing hops additionally to the ones already 
known from the function timing. All these hops can 
now be used to model a set of so-called segments. A 
segment is a special event chain with a stimulus and 
a response hop. In a consistent Timex model every 
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function-chain is refined by an arbitrary number of 
segments without gaps and also without overlaps. 
One segment can be used for the refinement of 
many function-chains. In other words, a segment 
belongs to one team, but one segment can be part 
of several function-chains. System timing consists of 
all additional hops and all segments and it is 
attached to a system model as its timing extension. 

A complete Timex model of a system contains the 
function-triggered timing constraints of all function-
chains modelled as function timing and the 
implementation-specific segments modelled as 
system timing. We call the complete representation 
of a function-chain by means of segments the 
function-chain’s segmentation. An example Timex 
model (function-chain and its segmentation) with all 
relevant model elements is depicted in Figure 2. 

 

hop

sensor event

hop

actuator eventfunction event chain

endToEnd

segment

sensor
segment

transmit 

sensor value

segment

transmit 

controller value

segment

controller

segment

actuator

Function Timing

System Timing

hop

sensor 

value 

queued

hop

sensor 

value 

transmitted

hop

controller 

value 

transmitted

hop

controller 

value 

queued

latency timing constraint: 20 ms

 

Figure 2: Example Timex model 

3.3 Methodology 

Our methodology, described in this section, focuses 
on the system designer role described in Section 
2.2. It is mainly following an idealized top-down 
approach for system development. In practice of 
course system development is more complex and is 
subject to many restrictions and prerequisites. Here, 
the methodology is sufficient to explain the basic 
problem, our proposed approach, and our solution. 

Figure 3 depicts our methodology. It consists of six 
steps. The first three steps are performed manually 
by engineering work. Steps 4, 5 and 6 are performed 
automatically, i.e. using algorithms. Steps 5 and 6 
are performed iteratively. In the following each step 
is described in detail. 

3.3.1 Define Function Timing 

The first step is the definition of the function timing 
model (Section 3.2.2) where all function-triggered 
timing constraints are collected (Section 3.2.3). 
Function-triggered timing constraints are 
implementation-independent, so no system model is 

necessary in this step. A function model however is 
needed to attach function timing. As described in 
Section 3.2.3 we use an empty composition for this 
purpose. 

 

Figure 3: Methodology for distributed development 
based on function-triggered timing constraints 

Each observable event offered by the function model 
or the software structure model can be characterized 
as a hop. They can be used for the definition of 
function-chains, which in turn have function timing 
constraints. In function timing these hops typically 
are “end-events” of signal paths like external events 
and runnable entity terminated events. A function 
timing model is always valid in the context of the 



 Page 6/10 

function model to which it is attached. However, the 
function model can be used in several system 
models and the according function timing can thus 
be re-used. This concept makes function timing 
independent from an implementation (i.e. concrete 
system). 

3.3.2 Configure System 

System configuration means to map the atomic 
SWCs of a software structure model onto ECUs of a 
hardware topology model. The design process of 
developing a software architecture (i.e. software 
structure model) for the desired functional scope is 
neglected here.  Furthermore, a signal is created for 
each data element sent over a remote connector. 
The output of this step is the model of a system. We 
assume that the system designer knows enough 
details of the complete system. 

3.3.3 Define System Timing 

A system model and the according function timing 
model are input for the definition of the system 
timing. In this step additional communication-related 
and SWC-related events can be characterized as 
hops because now also the software structure, 
software mapping and the resulting communication 
is known. All additional hops of the system timing 
must be on the signal path between the function 
timing end-to-end hops. We assume that the system 
designer as central role knows the responsibilities 
within the complete system and thus can identify 
which events separate two teams. Each segment 
created that way belongs to one responsibility, i.e. to 
one development team. The output is the Timex 
system timing “graph”, consisting of hops (vertices) 
and segments (edges). 

3.3.4 Initialise Requirement Types 

The system timing model carries the requirement 
and guarantee values later in the methodology. 
Therefore the required types of requirements for 
segments and hops must be initialised once per 
system. The goal is to be able to express all function 
timing constraints by system timing requirements. 
This step can be automated. We explain its details in 
Section 4.1. 

3.3.5 Generate Requirement Values 

As mentioned earlier function-triggered timing 
constraints are independent from concrete 
implementation details. A special challenge in the 
proposed methodology is the tracing of design 
decisions and their influence on the generation of 
requirements starting from function-triggered timing 
constraints. One design decision is the software 
mapping. It influences which communication will be 
remote and thus influences which requirements are 
necessary for communication. Furthermore, the type 

of hardware topology as design decision influences 
the type of requirements to be generated. We made 
the observation that such kind of design decisions 
influence the way how a function-triggered timing 
constraint is mapped to requirements. 

The goal of this methodology step is to generate a 
set of timing requirements for certain segments and 
hops of the system timing model (see step 4). The 
requirements must be chosen in a way that the 
fulfilment of all function-triggered constraints is 
ensured if all requirements are fulfilled by their 
guarantees. We will focus on that in Section 5. 

3.3.6 Generate Communication Model 

As last step the communication model as described 
in Section 3.1.4 is generated. We assume that the 
system designer is responsible for the configuration 
of the system's communication. The communication 
model then is the basis for the work of all other 
teams. Primarily, three tasks have to be performed in 
this step. First, all signals have to be grouped in 
frames. Second, a communication matrix has to be 
generated using the communication information 
gathered from the software structure and the 
software mapping. Third, a scheduling of the frames 
has to be generated according to the communication 
type (FlexRay or CAN) and with respect to the 
requirements generated before. The resulting 
communication model must fulfil all communication-
related requirements. 

3.3.7 Iterative Steps 

After the last methodology step each involved team 
implements its subsystem, as depicted in the cloud 
in Figure 3. A subsystem is either an ECU, if the 
segments belong to a team in the role of an ECU 
integrator, or a single SWC, if the segments belong 
to a team in the role of a software component 
supplier. For each subsystem there are segments 
with timing requirements to be met. The teams must 
implement and configure their subsystem according 
to these requirements, if possible (see Section 5). 
Otherwise the system's correct timing behaviour 
cannot be ensured. 

When the subsystems have been implemented by 
the teams, timing guarantees for each segment are 
given back to the system designer. The guarantees 
are evaluated with respect to their requirements. If 
all requirements are met by the guarantees no action 
is required and the system is expected to fulfil all its 
function-triggered timing constraints. Otherwise the 
guarantees are input for the next iteration of steps 5 
and 6 of the methodology and a new set of 
requirement values must be generated. 

Today, this negotiation process takes place in an 
informal way. The Timex model and our proposed 
methodology formalize it. 
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4. Problem Analysis 

In this section we analyze the problem of steps 4 
and 5 of our methodology depicted in Figure 3. Thus, 
we assume that a system model is given (step 2) 
and function timing (step 1) as well as system timing 
(step 3) has been specified using Timex. 

We reemphasise our terminology. Timing constraints 
are system-wide, function-triggered and invariant. 
They must be fulfilled by an implementation. A timing 
requirement always refers to a single segment or 
hop. Requirements are generated and valid for one 
methodology iteration. They are accompanied by an 
according guarantee that must fulfil the requirement. 

In step 5 of our methodology a set of independent 
timing requirements for segments and hops shall be 
generated. These requirements must be fulfilled by 
the team in charge, which in turn delivers an 
appropriate timing guarantee. The problem of step 4 
is to transform the timing constraints into timing 
requirements for segments and hops, such that the 
fulfilment of all requirements by their according 
guarantees results in the fulfilment of all timing 
constraints (“getting independently verifiable 
requirements”). This is done once per system. 

If the guarantees do not fulfil all requirements, a new 
iteration is initiated. So the problem of step 5 is that 
in iteration n+1 the guarantees for the requirements 
of iteration n must be considered. That means the 
new requirements shall not be generated arbitrary or 
randomly, but with respect to the before generated 
ones (“getting valid requirement values”). 

A solution to the problem of step 4 ensures that 
correct timing is evaluated on the level of single 
requirements instead of system-wide constraints. A 
solution to the problem of step 5 ensures that valid 
requirement values are found. 

The rest of this section is devoted to step 4. Section 
5 outlines considerations to step 5. 

4.1 Types of Segments 

A system timing model consists of segments that 
form function-chains. These are specified in the 
according function timing. With the set of possible 
events as hops (Section 3.2) and our considered 
roles and use cases (Section 2.2) there are certain 
types of possible segments. Table 1 lists all possible 
segment types for the use case ECU integration. 

 

Segment type Stimulus Hop Response Hop 

sensor-to-bus external signal queued 

transmission signal queued signal transmitted 

over-ecu signal transmitted signal queued 

bus-to-actuator signal transmitted external 

Table 1: Segment types for the use case “ECU 
Integration” 

For the second use case SWC integration all 
segment types except transmission can possibly be 
refined. Now the path over a SWC within the 
respective segment becomes visible in system 
timing. Table 2 lists the additional segment types. 

 

Segment type Stimulus Hop Response Hop 

receive-data signal transmitted data on required port 

over-swc data on required port data on provided port 

send-data data on provided port signal transmitted 

Table 2: Additional segment types needed for the 
use case “SWC Integration” 

Certain design decisions influence the segmentation 
of function-chains, i.e. what types of segments are 
needed for their segmentation. The first decision, of 
course, is the set of atomic SWCs. The second is the 
software mapping. The third are the use cases that 
influence what segment types are needed (see 
Tables 1 and 2). These design decisions are already 
considered in methodology step 3. 
Once all necessary segment types for the system 
timing have been determined and the system timing 
is complete a valid segmentation of all function-
chains is given. 

4.2 Mapping of Constraints to Requirements 

As described in the beginning of section 4, function-
constraints shall be expressed as a set of individual 
requirements for segments and hops. Each of the 
three possible constraint types latency, 
synchronization and triggering (see Section 3.2.1) 
must be mapped to requirements. We define the 
following three possible types of requirements: 

• A segment can have a latency requirement. 
The segment must then have a certain 
minimum and maximum latency. 

• A hop can have an offset requirement. The 
hop must have a minimum and maximum 
offset (“distance”) to a certain reference hop. 

• A hop can have a triggering requirement. 
The hop’s event must then have a certain 
period. 

 

Note that there is no such thing as a synchronization 
requirement possible on the granularity of segments 
and hops. Synchronization always requires several 
objects to be referenced. This is not possible for 
segments and hops, because their requirements 
shall be independent from other segments. That is, 
synchronization constraints (for function-chains) as 
well as the other two constraint types must be 
mapped to the requirement types given above. 

In the next Section we show this mapping using a 
simple example. 
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4.3 Example 

Consider the example given in Figure 2. The function 
chain “endToEnd” is already segmented to five 
segments, based on the software mapping design 
decision and the appropriate use cases. As you can 
see in the example, the applied use case is ECU 
integration of a sensor ECU, a controller ECU, and 
an actuator ECU. Thus, in this example we consider 
the ECUs as “black boxes” with no third-party 
software components on them. The system designer 
is responsible for two transmission segments. The 
ECU integrators of the three ECUs each are 
responsible for their ECU segment. 

The communication type as design decision 
influences the type of requirements that segments 
and hops of the system timing have to fulfil. The 
requirement types are different for a CAN network 
compared to a FlexRay network. 

In the following we analyse the two different sets of 
requirement types for the latency constraint in Figure 
2. The requirement type sets are given in Table 3. 

 

Segment CAN FlexRay 

sensor latency latency  

transmit sensor 
value 

latency triggering + offset for 
stimulus and response hop 

controller latency latency 

transmit controller 
value 

latency triggering + offset for 
stimulus and response hop 

actuator latency latency 

Table 3: Requirement types needed for the same 
function-chain in a CAN and a FlexRay system 

4.3.1 CAN 

For a CAN network we assume that the control flow 
is given by the data flow. In our case that means the 
triggering of a stimulus hop’s event triggers the 
response hop’s event. The latency constraint can 
therefore be mapped to five latency requirements, 
one for each segment. The sum of all min/max 
latency requirement values must be greater/smaller 
than the latency constraint’s min/max value. 
However, every team only has to ensure the 
fulfilment of its requirement, regardless of the overall 
constraint (similar to a divide and conquer 
approach). For example, the system designer must 
ensure that the sensor value and controller value 
transmission is performed within its required latency.  

4.3.2 FlexRay 

In case of a time-triggered bus like FlexRay the 
control flow is not directly given with the data flow 
since data transmission is triggered by the progress 
of time. It must be specified when data is expected 
to be queued for transmission and is transmitted. 
Therefore an offset requirement is used. Besides the 

minimum and maximum values, an offset 
requirement also specifies a so called “source hop”. 
The actual target hop must have the specified offset 
relative to the source hop. In a FlexRay network, the 
source hop typically is the cycle start of the network. 
The transmission latency is expressed my means of 
relative offsets. Because of the cyclic repetition of 
FlexRay communication, also a triggering must be 
specified for each queued and transmitted hop. 
Therefore an additional triggering requirement is 
necessary to map the initial latency constraint to a 
FlexRay network. Here we only want to show, which 
requirement types are necessary, not which values 
they must have. This is investigated in Section 5. 

4.4 Fulfilment of Requirements with Guarantees 

Methodology step 5 includes the consideration of 
timing guarantees in the requirement generation 
process to avoid random requirement generation. 
Therefore we first define, in which case a timing 
guarantee fulfils a timing requirement. 

• A latency requirement specifies a minimum 
and a maximum latency, i.e. an interval. The 
guaranteed interval must be within the 
required interval. 

• An offset requirement specifies a minimum 
and a maximum offset, i.e. an interval. 
Again, the offset guarantee interval must be 
within the offset requirement interval. 

• An event triggering requirement for a hop 
specifies a period. The guaranteed period 
must be the same as the required period. 

5. Collaboration Scenarios 

In this section we want to outline our approach of 
iterative requirement value generation. As depicted 
in our methodology in Figure 3, new requirement 
values must be generated if not all requirements are 
fulfilled by their guarantees. 

To illustrate our iterative approach we will stick to our 
example of Figure 2 and assume a CAN network, i.e. 
a requirement setup as shown in the second column 
of Table 3. 

5.1 One Function-chain Example 

In the first simple scenario, we assume only one 
function-chain (Table 4) with a maximum latency 
constraint. The minimum value is neglected here 
because the concept is the same. 
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Three cases are possible for a requirement value: 

1. If a latency requirement is exactly fulfilled by 
its guarantee (requirement value equals 
guarantee value) everything is fine. 

2. If a guarantee value is even smaller than its 
requirement value then the requirement is 
fulfilled and additional buffer is gained. 

3. If a guarantee value is greater than its 
requirement value then there is a problem. A 
new iteration must be initiated to generate a 
new set of requirement values. 

Segment Iteration n Iteration n+1 

 Requ. Guar. Requ. Guar. 

sensor 8 4 4 4 

transmit sensor val. 2 2 2 2 

controller 6 4 4 4 

transmit controller 2 2 2 2 

actuator 2 6 6 6 

Sum 20 18 18 18 

Table 4: Collaboration scenario, one function-chain 

In Table 4 the transmission segments exactly fulfil 
their requirements in iteration n. The actuator 
segment violates its requirement. Though, the 
sensor and controller segments have smaller 
guarantee values. This buffer can be used to grant a 
more relaxed requirement for the actuator in iteration 
n+1. We call this process horizontal shifting (shifting 
buffer along a chain). 

5.2 Two Function-chains Example 

In this more complex scenario of Table 5 we assume 
we have two (or more) such function-chains. For 
simplicity we now assume they are independent, i.e. 
they don’t have common segments. 

Segment Iteration n Iteration n+1 

 Requ. Guar. Requ. Guar. 

sensor 1 8 6 6 6 

transmit sensor 1 2 2 2 2 

controller 1 4 4 6 6 

transmit controller 1 2 2 2 2 

actuator 1 4 4 4 4 

Sum 20 18 20 20 

 

sensor 2 8 8 8 8 

transmit sensor 2 2 2 2 2 

controller 2 4 6 4 4 

transmit controller 2 2 2 2 2 

actuator 2 4 4 4 4 

Sum 20 22 20 20 

Table 5: Collaboration scenario, two function-chains 

In chain 1 the sensor segment’s guarantee is smaller 
than its requirement so there is a buffer of 2 in 
iteration n. Chain 2 however has a violated 
requirement at its controller segment. In iteration n+1 
the buffer of chain 1 can be used for chain 2 
indirectly, because both controller segments are on 
the same ECU. We assume, if one segment’s 
requirement is relaxed, another segment’s 
requirement on the same resource can be tightened. 
We call this process vertical shifting (shifting buffer 
along a resource). 

5.3 Generalization of the Problem 

The two examples showed our basic ideas how a 
functioning timing configuration can be found using 
an iterative process. Therefore the use of buffers is 
essential. For a real-world system with several such 
chains and multiple development teams a complex 
framework of constraints arises. That means that in 
fact it is not trivial to determine valid requirement 
values. In particular, a “manual approach” like in 
these examples will be inapplicable. We use 
constraint logic programming (CLP) techniques to 
formalize all dependencies of requirement values 
and to generate new values during an iteration of 
methodology steps 5 and 6. Our constraint system 
sets up different classes of rules that constrain the 
resulting requirement values: 

• Basic, system-specific rules, e.g. the offset 
of a transmission hop must be smaller than 
its period 

• Rules to ensure that all function-triggered 
constraints are fulfilled with the requirements 
(independence of requirements), e.g. by 
summing the segment latencies of chains 

• Rules that express horizontal and vertical 
shifting as explained in Sections 5.1 and 5.2 

• Optimization rules, e.g. maximize the latency 
of a function chain to save resources 

A constraint solver can then be used to determine 
requirement values that fulfil all of these CLP 
constraints. 

6. Prototype Implementation 

Our Methodology is implemented as a prototype tool. 
It is based on Artop [9]. Artop is an Eclipse-based 
community approach to deliver a common platform 
for AUTOSAR tools. It offers basic functionalities, 
like an AUTOSAR meta-model implementation, 
model and workspace management or basic model 
editors. Artop is the fundament for the 
implementation of our prototype. 
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Figure 4: Function timing example 

We use Artop’s plug-in concept to implement all 
Timex functionalities as plug-ins. The plug-ins offer: 

• The Timex meta-model (Section 3.2) 

• A textual Timex editor to model Function 
Timing and System Timing (Figure 4) 

• A graphical Timex viewer to display the 
structure of function-chains, segments and 
hops graphically (Figure 5) 

• An implementation of methodology step 4 

• CLP algorithms as example implementation 
of methodology step 5  

• A simple communication generator (step 6) 

• A converter to export generated Timex 
requirements to a standard AUTOSAR 4.0 
timing model and vice versa 

Our prototype covers the complete methodology as 
described in Section 3.3 
 

 

Figure 5: Graphical Timex viewer 

7. Summary 

In this article we presented Timex, a development 
methodology and timing model for automotive 

systems. The focus of Timex is a distributed 
development of distributed automotive real-time 
systems. Our methodology focuses on the role 
system designer in such a distributed development 
environment. This role integrates the overall system 
and must ensure the fulfilment of its timing 
constraints. Timing constraints are considered as 
function-triggered. We propose a timing model for 
the methodology and an approach to map function-
triggered timing constraints to requirements to be 
fulfilled by the involved teams. In an iterative 
process, requirement values are determined, such 
that a) the implementation of all teams can fulfil their 
requirements with guarantees and b) the fulfilment of 
all requirements implies the fulfilment of all function-
triggered timing constraints. The methodology is 
illustrated with some examples. Currently we are 
developing a formal description of our approach. 
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